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As a general case of molecular graphs of polycyclic alternant hydrocarbons, we consider
a plane bipartite graply with a Kekulé pattern (perfect matching). An edgefis called
nonfixed if it belongs to some, but not all, perfect matchingg&ofSeveral criteria in terms
of resonant cells for determining wheth@ris elementary (i.e., without fixed edges) are re-
viewed. By applying perfect matching theory developed in plane bipartite graphs, in a unified
and simpler way we study the decomposition of plane bipartite graphs with fixed edges into
normal components, which is shown useful for resonance theory, in particular, cell and sextet
polynomials. Further correspondence between the Kekulé patterns and Clar (resonant) patterns
are revealed.

KEY WORDS: benzenoid, Kekulé structure, Clar pattern, plane bipartite graph, normal com-
ponent
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1. Introduction

Some important graph-theoretical approaches, such as Herndon’s work [1] and
Randt conjugated circuit model [2], were established during the last two decades for
general resonance theory of polycyclic aromatic hydrocarbons (benzenoid systems). The
sextet polynomial for counting sextet patterns of benzenoid or coronoid systems was
found by Hosoya and Yamaguchi [3]. In fact the sextet polynomial reflects the com-
binatorial background of Clar's concept of the aromatic sextet [4,5], and was used for
the calculation of the resonance energy of benzenoid hydrocarbons [6,7]. Gutman [9]
and John [8] extended the sextet polynomial to define the so-called cell polynomial of
polycyclic unsaturatedlternanthydrocarbons for counting Clar (or resonant) patterns.
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A certain correspondence between the Clar patterns and Kelulé patterns was established
[5,9-11].

A fixed bond (edge) of polycyclic unsaturated alternant hydrocarbons cannot be
contained in any conjugated circuits and thus has no contributianresonance ener-
gies of the corresponding molecules. The decomposition of such molecular graphs with
fixed bonds into normal components enables one to simplify greatly the computations of
some graph-theoretical models as mentioned above.

As a mathematical framework of polycyclic unsaturated alternant hydrocarbons, in
this paper we consider a plane bipartite graph with perfect matchings, which embraces
benzenoid and coronoid systems [7,12,13].

A plane graphG is an (intersection-free) embedding in the Euclidian plane. A sub-
graphH of G is a plane graph that can be viewed as the restriction of the embedding of
G on H. The boundary of the infinite face is simply referred to as the bounda6y, of
denoteddG. A vertex not belonging to the boundary 6fis said to benterior vertex
of G. An outerplane graphs a 2-connected plane graph without interior vertices. A fi-
nite face ofG is called acell if its boundary is a cycle. For convenience, a cell may be
referred to its boundary.

A Kekulé pattern(or 1-factor, perfect matching [14] and Kekulé structure [13]) of
G is a set of pairwise disjoint edges 6fthat cover all of its vertices. For a 1-factdf
of G, a cycleC of G is calledM-alternating (or conjugatedl if the edges of” alternate
on and off theM. Such a cycle” is said to to beesonant A setS of pairwise disjoint
cells of G is calledClar (or resonany patternif G has a 1-factoM such that all cells in
S are simultaneously -alternating.

An edge ofG is called dfixed single edgé it belongs to no 1-factorfixed double
edgeif it belongs to all 1-factors. A bipartite graph with 1-factor is callearmal (or
elementaryif it is connected and has no fixed single edges. The components of the sub-
graph ofG formed by all nonfixed edges are normal and thus cailtedhal components
of G. Fast algorithms were designed [15-17] to determine all normal components and
fixed edges of bipartite graphs.

It is known that an elementary bipartite graph with more than two vertices is
2-connected. Several equivalent results for a bipartite graph to be elementary were de-
scribed in [14]. In case of plane bipartite graphs [18] (including benzenoid systems [19]
and coronoid systems [20]), some special fundamental structural properties were given.
In section 2 we shall list such characterizations in term of resonant faces.

Much works [13,21-25] were done on benzenoid systems with fixed edges, which
were viewed as “essentially disconnected”. In fact it has been rigorously proved by
Hansen and Zheng [23] that an essentially disconnected benzenoid system has at least
two normal components, and every normal component is a normal benzenoid sys-
tem.

For plane bipartite graphs with fixed edges, the situation is somewhat complicated.
For example, the coronoid systeh shown in figure 1 has three normal components
G1, G, and G3; both G1 and G, are normal benzenoid systems, where every interior
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Figure 1. (a) A coronoid systeid with fixed single edges. (b) Normal componentsGof

face is a face ofG, such normal components are calledrmal blocks while G3 is
a coronoid system with a “hole” that is not face of the original gréhhthat means that
G3is not a normal block.

Even though, it is shown in section 3 that a plane bipartite g@plith fixed edges
and the minimum degree not less than 2 has at least two normal components and at least
onenormal block. As an immediate consequence, we have that for any 1-dabdiG,
an M-alternating cell exists. In section 4 some extremal cases are characterized. For
example, it is proved that every normal componen&Gas normal block if and only if
G is weakly elementary.

Finally we will give some applications of the results obtained above to resonance
theory. It is shown that the sextet polynomial of a benzenoid or coronoid system can
be expressed as the product of those sextet polynomial of its normal components; such
an result holds for the cell polynomial of a plane bipartite gr&plf and only if G
is weakly elementary. A surjection from the Kekué patterns to the Clar patter@s of
is established; it is shown that such a surjection is an one-to-one correspondence if and
only if G is is weakly elementary and for any pair of resonant cycles their interior regions
are disjoint.

Throughout this paper, the vertices of a bipartite graphare colored white and
black such that adjacent vertices receive distinct colors; deviote) and E(G) the
vertex-set and edge-set Gf, respectively;§ (G) the minimum degree of; andgG the
family of connected plane bipartite graphs with 1-factor.
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2. Resonancefaces of elementary plane bipartite graphs

A bipartite graph iselementaryif the union of its 1-factors forms a connected
subgraph. Various equivalent results on elementary bipartite graphs can be found in [14].
For example, a connected bipartite graph is elementary if and only if every edge belongs
to a 1-factor; if and only if the deletion of any pair of distinct colored vertices results in
a graph having a 1-factor. For a plane bipartite grapta facef of G is calledresonant
if G has a 1-factoM such that the boundary gf is an M-alternating cycle. In case of
plane bipartite graphs, the following special characterization in terms of resonant faces
was given.

Theorem 2.1 [18]. Let G be a plane bipartite graph with 1-factors. Th&ns elemen-
tary if and only if every face of; is resonant.

If all interior vertices ofG are of the same degree, a simpler criterion is given as
follows.

Theorem 2.2 [18]. Let G be a connected and bipartite plane graph. Suppose all the
interior vertices ofG are of the same degree. Thénis elementary if and only if the
exterior face ofG is resonant.

Three distinct types of such graphs are exemplified in figure Bezenoid sys-
temis 2-connected plane bipartite graph in which every interior region is bounded by
a unit regular hexagon. Aoronoid systens a benzenoid system witholes(i.e., non-
hexagonal interior faces), but every edge is contained in a hexagon. Since all interior
vertices of a benzenoid system are of degree three, so theorem 2.2 implies the follow-

ing

Corollary 2.3 [19]. Let H be a benzenoid system with 1-factors. Thérs normal if
and only if the exterior face aff is resonant.

For coronoid system, the following criterion was obtained by Zhang and Zheng.

Theorem 2.4 [20]. Let C be a coronoid system with 1-factors. Th€ns normal if and
only if every nonhexagonal face is resonant.

| [ [ ] %

Figure 2. Some types of plane bipartite graphs that its interior vertices are of the same degree.
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3. Normal components

Fast algorithms were designed [15-17] to determine all normal components and
fixed single edges of bipartite graphs. One is outlined as follows. First, we orient all
edges of any given 1-factawf from white towards black end-vertices. Then we orient
all the other edges aff from black towards white end-vertices. Finally, by depth first
search we determine the strongly connected components of the resulting digraph in linear
times. These strongly connected components correspond to normal compongnts of

It is useful to introduce ageometri¢ dual graphG* [26] of a plane graplG in
characterizing a plane bipartite graph with fixed single edggshas a vertexf* for
every facef of G, wheref* is placed insidef’; corresponding to an edgef G which is
adjacent to two faceX¥ andY of G, there is an edge’ of G* joining the vertices(* and
Y* of G* ande* crosses only the edgeof G. FOrE C E(G), putE* := {e¢* | e € E}.

Note that the dual grap&f* is a connected plane graph and may contain self-loops and
multiple edges.

A setS of edges of a connected graghis called acutsetif G — S is not connected
andG — S’ remains connected for any proper subSetf S.

Lemma 3.1 [26]. Edges in a plane grapi form a cutset inG if and only if the corre-
sponding dual edges form a cycledit.

Definition 3.1. Let G be a connected plane bipartite graph. A cutSeif G is called
elementary edge cife-cutsel of G if all edges ofC are incident with white vertices of
one component of; — C. This component is called thehite bank of C, denoted by
Gw(C). The other component is called théack bank of C, denoted byG,(C). The
corresponding cycl€™* of G* is called arelementary closed cut linsimply e-cutling
of G (see figure 1).

Note that the concep-cutlinehere can be viewed as a generalization of cut (bro-
ken) segments appeared previously in benzenoid and coronoid systems [12,19,27,28].
Let H be a subgraph of;. Denotew(H) andb(H) the numbers of white and black
vertices, respectively. Le&f € G. The following theorem gives a criterion to determine
whetherG has a fixed single edge.

Theorem 3.2 [18]. LetG € G. ThenG is not elementary if and only i has an e-cutset
C such thab(Gp(C)) = w(Gw(C)), i.e., all edges o€ are fixed single.

Recall that a normal component @fis called anormal blockif every interior face
of it is a cell of the original grapiG. Although any normal component @f is not
necessarily a normal block as shown in introduction, we have the following

Theorem 3.3. LetG € G and§(G) > 2. ThenG has at least one normal block.
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Proof. If G is elementary, the result is trivial. Suppose tGahas a fixed single edge.
Then by theorem 3.2, there exists an e-cutlifecorresponding to e-cutsét such that
all the edges o€ are fixed single. Suppose th@t is minimal in the sense that there is
no other e-cutsef consisting of fixed single edges such that the componett of C
lying in the interior ofC™ is a proper subgraph of the component®f- C lying in the
interior of C*. Without loss of generality, assume that the componer of C lying

in the interior of C* is the white bank, i.e G (C). SinceG € G and the restriction of
every 1-factor ofG on G, (C) is also a 1-factor oG, (C), soGw(C) € G. Itis easily
seen that every black vertex @&, (C) is of the same degreex(2) as inG. SoG(C)
has at least 4 vertices.

It suffices to prove thaG,,(C) is elementary: ifG(C) is elementary and has
more than two vertices, its edges are nonfixed. Moreover, all edgésid fixed single
implies thatG,,(C) is a normal component @ . Since every cell 06, (C) is that of G,

G (C) is a normal block of5.

Suppose thatG,,(C) has a fixed single edge. Then by theorem G2(C) has
also an e-cutsef whose edges are all fixed single. From the dual g@phdelete the
vertices lying in the exterior of* and contract the cycl€* into a vertexc* to result
in the dual graph of5,,(C). If the corresponding e-cutlin€” of G, (C) does not pass
throughc*, thenC is identical with an e-cutset @ and the component @ — C lying
in the interior ofC" is a proper subgraph @ (C), which contradicts the minimality
of C*. ThusC  passes through*. Whenc* is recovered to the cycl€* of G*, C"
either remains a cycle or becomes a patlG;6f denoted byP*. For the former case, a
contradiction would occur as before. We consider the latter cagg,linP* there exists a
cycle C™* that is an e-cutline of; (see figure 1), the interior of which contains the white
bank. Obviously all edges of the corresponding e-cutSedre fixed single. However,
the component oG — C’ lying in the interior of C’* is a proper subgraph a,,(C),
which also contradicts the minimality 6f*. O

Definition 3.2. Supposes € G has fixed single edges. A normal componénbf G is
said to beextremdf (i) G; is a (white or black) bank of an e-cutset@f and (ii) G; has
exactly one face which is not a face Gf

Corollary 3.4. Suppose; € G and§(G) > 2. If G has a fixed single edge, théhhas
at least two extreme normal components.

Proof. The proof of theorem 3.3 implies th&thas a normal component that is a bank

of an e-cutlineC* and contained in the interior of it, which must be extreme; the ex-
istence of another extreme normal component can be verified when considering always
the exterior region of*. 0

Corollary 3.5. SupposeG € G. If all vertices with degree one aff are of the same
color and lie on the boundary @f, thenG has at least one normal block.
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Figure 3.

Proof. Without loss of generality, assume that all vertices with degree ong afe
of white color. Letu be a white vertex incident with a unique edge Thenuv is a
pending, and thus fixed double edge. The other edges incidenwveith fixed single
edges. Deleting the verticasandv together with incident edges, the resulting gr&pgh
has the following properties (see figure 3):

(i) Every interior face ofG’ remains a face of;;

(i) G’ has black vertices, and every black vertex remains the same deg®e (
as inG; and

(iii) If G’ has a vertex with degree 1, then it is of white and lies on the boundary
of G'.

Repeating the above procedure, by the finitenegswe finally obtain a subgraph,
denoted byG”, satisfying that every interior face is a face@fand the minimum degree
> 2. By theorem 3.3G” and thusG has a normal block. O

Lemma 3.6 [18]. Let G be a plane elementary bipartite graph with more than two ver-
tices. Then for every 1-factavf of G, it has anM-alternating cell.

Corollary 3.7. LetG € G. If all vertices with degree one @ are of the same color
and lie on the boundary df, or if §(G) > 2, then for every 1-factoM of G, there
exists anM -alternating cell.

Proof. By theorem 3.3 and corollary 3.8, has a normal blocks,. For every 1-factor
M of G, the restrictionM |, is also 1-factor of5;. Then by lemma 3.6(/1 and thusG
has anM-alternating cell. a

4, Someextremal cases

From theorem 3.3, we know that a plane bipartite graph with a fixed single edge and
the minimum degree: 2 has at least one normal block. In this section we shall discuss
when a plane bipartite graph has exactly one normal block and all normal components
are normal blocks, respectively. In addition, we estimate the number of normal blocks
when a single cycle is a normal block.
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4.1. Exactly one normal block

Definition 4.1. LetG € G. Let G, andG; be two disjoint subgraphs @f and f a finite
face of Go. ThenG can be represented @s:= G, <y Gy, if

(i) G liesin the interior of facef of Gy;

(i) Let G’ := G — V(G1UGy). ThenG’ lies in the interior off and the exterior
of G; andG’ has a unique 1-factor; and

(i) Let Eq = E(G)\E(G1UG>). ThenEjy lies in the interior off and the exterior
of G, and only the vertices with the same color@f (respectivelyG,) are
incident with edges oF.

“<"is, in fact, an operation between two plane bipartite graphs. For an example,
see figure 4. Furthermore, we can define the operatonamong many graphs in turn,
for exampleG1 <, G2 <5, G3 = (G1 <y, G2) <y, Ga. Note that the operation<”
satisfies the associate law but not the commutative law. For convenience, the subscript
may be omitted if no confusion may arise.

Theorem 4.1. Let G € G and§(G) > 2. ThenG has exactly one normal block if and
only if G can be represented 65:= G; < Gy < -+ < Gy (k > 1), where theG;’s are
the normal components af.

Proof. LetGy, Go,..., Gy (k > 1) denote the normal components@f If G can be
represented a6 := G; < G, < --- < Gy, by definition 4.1 it is obvious that has a
unique normal bloclG.

We shall prove the necessity by the induction on the numladrnormal compo-
nents ofG. If k = 1, then by corollary 3.45 itself is elementary and the result is trivial.
In what follows, suppose that> 2. By the proof of theorem 3.&; has an e-cutlin€*
such that the component 6f — C lying in the interior ofC* is a normal block, denoted
by G;. The component of; — C lying in the exterior ofC* is denoted byG’. We as-
sert thatC* does not pass through the vertex@f corresponding to the exterior of.
Otherwise every interior face @’ is a cell of G, and by corollary 3.45’ also contains
a normal block ofG, a contradiction. Thu&' has exactly one interior facg which is

Figure 4. lllustration oG := G1 <y G».
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not a cell of G. If G’ has vertices of degree 1, they must be of the same color and lie
in the boundary off]. By the proof of corollary 3.5, repeatedly deleting those vertices
with degree 1 and their adjacent vertices together with their incident edges in turn, the
resulting graphG” has the following properties: (" is connected and the minimum
degree> 2, (ii) G” has exactly one finite facg which is not face ofz, and (iii) G” has

k — 1 normal components. Thus = G; <y G”. On the other hand;"” has exactly

one blockG,, which must contain the facg of G’. By the induction hypothesis we
have thatG” := G, < --- < Gy, where theG;’s are the normal components 6f'.
ThusG := G; < G, < --- < Gy. The proof is complete. O

Corollary 4.2. LetG € G and§(G) > 2. If G has exactly one normal block, then the
exterior face ofG is resonant.

Proof. By theorem 4.1, the exterior face 6fis also that of the normal componegif.
By theorem 2.1 the exterior face 6f,, and thus ofG is resonant. O

As an immediate consequence, we have

Corollary 43. Let G € G and§(G) > 2. If G has a fixed single edge lying in the
boundary ofG, thenG has at least two normal blocks.

4.2. All normal blocks

Definition 4.2. Let G € G. An edge ofG is calledallowedif it belongs to a 1-factor.
G is calledweakly elementarf18], if for any resonant cycl€ of G, the edges that are
incident with the vertices of and lie in the interior of” are allowed.

Lemma4.4 [18]. LetG € G and§(G) > 2. ThenG is weakly elementary if and only
if for every resonant cycl€, the subgraph of; formed byC together with the interior
is elementary.

Theorem 4.5. Let G € G. Then every normal component 6fis a normal block if and
only if G is weakly elementary.

Proof. Suppose that every normal componentGfs a hormal block. LetC be any
resonant cycle of;. ThenC must be contained in a normal componéhtof G. Since
G; is also normal block, the edges lying in the interior(fare allowed. TherG is
weakly elementary.

Conversely, suppose thatis weakly elementary. L&b4, ..., G, (k > 1) be the
normal components afi. Since eaclG; (1 < i < k) is a plane elementary bipartite
graph, the boundar§G; of G; is a resonant cycle. L&{dG;] denote the subgraph of
formed byd G; and the interior. By lemma 4.40G;] is elementary. Thug[dG;] = G;,
i.e.,G; is a normal block of5. O
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Corollary 4.6. Let G € G be weakly elementary artdG) > 2. If G has a fixed single
edge, therG has at least two normal blocks.

Obviously elementary plane bipartite graphs are weakly elementary. Other types
of known weakly elementary bipartite graphs are hexagonal systems, square systems
and other systems exclusively formed by regular squares and octagons as cells (see fig-
ure 2), etc., which have the important properties that the interior vertices have the same
degree and if the boundary is a resonant cycle, then they are elementary. Theorem 4.5
and corollary 4.6 can be viewed as extension of the corresponding results in hexagonal
systems. Furthermore, we are interested in seeking for novel types of weakly elementary
plane bipartite graphs.

4.3. Small normal blocks

Theorem 4.7. Let G € G and§(G) > 2. Assume thaG has more than one cycle and
all vertices of degree 2 lie on the boundary®fIf G has a cycle as normal block, then
G has at least two normal blocks.

Proof. Let a cycleC of G be a normal block. Suppose th@thas exactly one normal
block, which must b&'. SinceG has more than one cyclé&, has fixed single edges and
thus at least two normal components. By theorem 4.1 we know that the verti€esref
interior vertices ofG and thus of degreg 3; on the other hand, only the same colored
vertices (say white) are incident with edges not belonging ,tthe black vertices of
are thus of degree 2, a contradiction. O

Theorem 4.8. Let G € G be 2-connected and weakly elementary. Assume@hhas
more than one cycle and all vertices of degree 2 lie on the boundagy. &f G has
m (m > 1) distinct cycles as normal blocks, théhhasm + 2 normal blocks.

Proof. Itis obvious thaiG contains fixed single edges and every normal component is
normal block (theorem 4.5). By corollary 3.4, has two extremely normal blocks;
andG, such that only the same colored verticegf(respectivelyG,) are incident with
edges not belonging 1G9, (respectivelyG,). We assert that neith&f, nor G, is a cycle.
Suppose thafr; is a cycle. Sinc&; is 2-connected( has a pathP only end-vertices
andv of which lie onC. Thenu andv are of the same color (say white). Furthermore,
P and a pathP’ of C from u to v form a cycle. The interior of the cycle lies in the exterior
of C. So P’ has a black vertex of degree 2, which must be an interior vertex®fa
contradiction. The assertion is verified. Thadas at least: + 2 normal blocks. O

Remark.In [23] Hansen and Zheng showed that, if benzenoid systems with fixed edges
has a single hexagon as its normal component, then it has at least three normal compo-
nents. Such a result is now extended to weakly elementary bipartite graphs in a simpler
way. A type of benzenoid systems with exaatly+ 2 normal components are illustrated
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Figure 5. A hexagonal system with 6 normal components (shadowy parts).
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Figure 6. Two weakly elementary bipartite graphs in which every normal block is a cycle.

in figure 5, wheren is the number of single hexagons as normal components. In addi-
tion, if the conditions of theorem 4.8 are violated, the result does not necessarily hold.
For example, all normal components (blocks) of two weakly elementary plane bipartite
graphs shown in figure 6 are cycles.

5. Clar patternsand cell polynomial

ForG € G, let S be a set of pairwise disjoint cells ¢f and denote by; — S the
plane graph obtained fro@@ by removing all vertices of cells if together with their
incident edges. Thef is called aClar (or resonan} pattern ofG if G — S either has
a 1-factor or is empty. It is obvious thdtis a Clar pattern of; if and only if G has
a 1-factorM such that every cell irf is M-alternating. Furthermore, a Clar pattefn
of G is calledsextet patterrnf every cell in S is a hexagon (or 6-membered ring). Let
¢(G) andk(G) denote the number of Clar patterns and sextet patterGs igspectively.

A pair of resonant cycle€; andC, means that; andC, are disjoint ands — C1 — C»
has a 1-factor or empty.

5.1. Cell polynomial

We now describe an definition of cell polynomial@fdue to Gutman [9] and John
[8]. If the cells of G are labelled byCy, Cy, ..., every cellC; is assigned a weight
w; = w(C;). Then the weight of a Clar pattethis defined as¥ (S) := [[.y w(C);
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in particular, the weight of an empty Clar pattern is 1. The cell polynomia aan be
defined as follows:

fe = fe(wy, wa,...) = Z W(S),
S

where the summation goes over all Clar pattg&mrf G.

In [8] an algorithm for computing the cell polynomial of an outerplane bipartite
graph was designed. We first give a reduction method for computing the cell polynomial
of a plane bipartite graply with fixed edges by decomposing into its normal com-
ponents. LeGy, ..., G, denote the normal components@f. Denote byF; the set of
some cells of5; that are not cells of7; such cells are called “forbidden”. The restricted
cell polynomial ofG; with respect to forbidden cells is defined as

fé = fo i wa, ) = Y W(S),
S

where the summation goes over all Clar pattsraf G; containing no forbidden cells
of G;. Of course, ifF; = ¢ (i.e., G; is anormal block) f = fg,.

Theorem 5.1. Let Gy, ..., G; be the normal components 6f€ G. Then

Proof. Let S be any Clar pattern ofi. Since any cell inS contains no fixed edges, it
must be a cell of exactly one normal component&;0fThus the restriction of on G;

is also a Clar pattern afi; that contains no forbidden cells 6f;; that means that any
Clar pattern ofG are composed of Clar patterns Gf, fori = 1, ..., k, containing no
forbidden cells ofG; and vice versa. O

The cell polynomial sometimes can be taken in various “coarsened” ways. For
example, let us compute the cell polynomial of the grapshown in figure 4, which
has two normal components; andG». If a cell C is assigned a weighbc|, fg, =
1+ we and fg, = 1+ 6ws + w3 + 2w3. The cell polynomial reads af; (wa, we) =
(14 we)(1+ 6wy + 9wf1 + 2w§’), which implies thaiG has exactlyf;(1, 1) = 36 Clar
patterns.

Theorem 5.2. LetGy, ..., G, be the normal components 6fe G. Then

if and only if G is weakly elementary.
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Proof. By theorem 5.1f; = ]_[j.‘:l fé.- In general f;. is only a part offg,. Thus

fc = ]_[f.‘:1 fc, holds if and only if /5 = f, for all i. Furthermore, if and only if
every cell ofG; is also a cell ofG. Otherwise, suppose that a c€llof somegG; is not
a cell of G. By theorem 2.4C} is a Clar pattern of5;, but contains a forbidden cell. It
implies thatf;;. # fg,, a contradiction. a

Corollary 5.3. Let G € G ands(G) > 2. If the cell polynomial ofG is irreducible on
the polynomial ringZ[w1, wo, .. .], thenG has exactly one normal block, and the other
normal components are cycles (if it has other).

Proof. By theorem 3.3, denot&,, ..., G, (k > 1) the normal components
whereG, is a normal block. Therfs = fs, # 1. By theorem 5.1 we havé; =

]_[f;l f¢,» which implies thatf; = 1, for all 2< i < k, and none of th&;; are normal
block. Furthermore, by theorems 2.1 and 4.1 it easily follows thaGthfor all i > 2
are cycles. O

Definition 5.1 [29]. Let M be a 1-factor oiG € G. An M-alternating cycleC of G is
called proper if every edge ofC belonging toM goes from white end-vertex to black
end-vertex by the clockwise orientation Gf otherwiseC is improper.

Lemmab5.4 [29]. For anyG e G there exists a unique 1-factdf without proper
M-alternating cycles. Such 1-factor is called thet 1-factor.

Theorem 5.5. Let G € G. Thenc(G) = f5(1,1,...) < k(G), and the equality holds
if and only if G is weakly elementary and for any pair of resonant cycles their interior
regions are disjoint.

Proof. We establish a mapping from the Kekulé patterns to the Clar patterngioés
follows. For any 1-factoM of G, definep (M) as the set of all prope¥ -alternating cells
of G. It is obvious thatp (M) is a Clar pattern of. Furthermore, it will be shown that
¢ is a surjection. For any Clar pattesiof G, by lemma 5.4 we take the root 1-factify
of G — S (i.e., without propeM,-alternating cycles), and a 1-factdf,; of the subgraph
formed by all cells inS such that all cells irf are propemM;-alternating. It follows that
Mgy U M, is a 1-factor ofG and¢ (Mg U M1) = S. Soc(G) = f6(1,1,...) < k(G).

The equality holds if and only i is a one-to-one correspondence between the
1-factors and the Clar patterns 6f. Suppose thaG is weakly elementary and for
any pair of resonant cycles their interior regions are disjoint. Metand M, be two
1-factors of G such thatp (M,) = ¢(M,) = Sp. It will be shown thatM; = Mo.
Let M; and M, be the restrictions oM; and M» on G — S, respectively. IfM; #
My, then M; # M;. Then the symmetric differencéf; & M, = (M1 U M>)\
(M1 N M>) contains an alternating cycl€é in M; and M;. Without loss of general-
ity we may say thaC is properM;-alternating. LetG[C] denote the subgraph @t
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formed byC together with the interior. The@[C] is a subgraph of; — Sy, and it is el-
ementary by theorem 4.4. Howevér{C] has a propeM;-alternating cell oiG, which
would belong taSy, a contradiction.

Conversely, ifG has a pair of resonant cycles, and C, such thatC; lies in
the interior of C,; that means that; has a 1-facto’M such that bothC; and C, are
M-alternating. By corollary 3.%;[C1] has anM-alternating cellC of G. SoC andC,
are a pair of resonant cycles. L&, := G — C. We choose a 1-facta¥f; of G such
that C is properM;-alternating andf4 |, is the root 1-factor ofG,. It is obvious that
¢ (M) = {C}. On the other hand, sing® is a resonant cycle @, it must be contained
in a normal component affg. We choose a cell” of this normal component so that
its interior contains the cell’ of the original graph. By lemma 5.4 we can construct an-
other 1-factorM; of G such that bottC andC; are propeiM,-alternating andz|g,c;,
is the root 1-factor olGo — C,. ThenM;, # M,. But it follows that¢ (M,) = {C};
otherwise, if other proped,-alternating cellC’ of G other thanC would occur,C’ is
disjoint with C, must lie in the interior o, and intersecC?, which contradicts that’,
is a cell of a normal component 6f.

On the other hand, if7 is not weakly elementary; has a resonant cyclé, such
that G[C;] contains a fixed single edge 6f. ThenC, must be contained in a normal
componentG; of G, which is not a normal block; that i€5; has a cellC that is not a
cell of G. We choose two 1-facto®; and M, of G so thatM, is the root 1-factor o5,

C is properM,-alternating cycle andf;|;_¢ is the root 1-factor oG — C. Similarly, it
follows that¢ (M) = ¢ (M>) = @, a contradiction. d

Corollary 5.6 [10]. LetG € G. Thenc(G) = f5(1,1,...) < k(G); the equality holds
if G is an outerplane bipartite graph.

5.2. Sextet polynomial

In this subsection we discuss the sextet polynomial of benzenoid or coronoid sys-
temsG, which is defined as [3,5]

Bo(x) =) ¥ = ia(G, D',
N i=1

where the first summation goes over all sextet patterns,ef (G, i) denotes the num-
ber of sextet patterns with exactlyhexagons and: is the maximum size of sextet
patterns.

The sextet polynomial of a benzenoid system can be reduced from its cell poly-
nomial by assigning all hexagons the same weightrther the sextet polynomial of a
coronoid systems can reduced from its restricted cell polynomial when all “holes” are
viewed as forbidden faces.

A subgraphH of a graphG is said to beniceif G — V(H) has a 1-factor.
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Theorem 5.7. Let G be a benzenoid or coronoid system afg, ..., G, its hormal
components. Then

k
Be(x) =[] B, ().

i=1

Proof. It follows from a fact that a sef of pairwise disjoint hexagons i§ is a sextet
pattern ofG if and only if the restriction ofS on every normal componeud; is also a
sextet pattern of5;. O

Lemmab5.8 [19]. Let G be a benzenoid system. The{G) = Bs(1) < k(G), and the
equality holds if and only ilG contains no coronene (the first one on the left-hand side
in figure 2) as its nice subgraph.

Theorem 5.9. Let G be a coronoid system. TheB;(1) < k(G), and the equality
holds if and only if every normal component 6fis benzenoid system that contains no
coronene as its nice subgraph.

Proof. By theorem 5.5 we have thdig(1) < ¢(G) = fc(1,1,...) < k(G). Let

Gy, ..., G, denote the normal components@f Combining by theorem 5.7 and a fact
k(G) = [ k(G,), we have thaBs(1) = k(G) if and only if Bg, (1) = ¢(G;) = k(G;)

forall 1 < i < k. Itimplies thatG; are benzenoid systems, i.€:; contains no holes
(nonhexagon interior faces). Otherwise, such a hole itself can form a Clar pattern, other
than sextet pattern, a contradiction. The second result follows by lemma 5.8. [
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