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As a general case of molecular graphs of polycyclic alternant hydrocarbons, we consider
a plane bipartite graphG with a Kekulé pattern (perfect matching). An edge ofG is called
nonfixed if it belongs to some, but not all, perfect matchings ofG. Several criteria in terms
of resonant cells for determining whetherG is elementary (i.e., without fixed edges) are re-
viewed. By applying perfect matching theory developed in plane bipartite graphs, in a unified
and simpler way we study the decomposition of plane bipartite graphs with fixed edges into
normal components, which is shown useful for resonance theory, in particular, cell and sextet
polynomials. Further correspondence between the Kekulé patterns and Clar (resonant) patterns
are revealed.
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ponent
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1. Introduction

Some important graph-theoretical approaches, such as Herndon’s work [1] and
Randíc conjugated circuit model [2], were established during the last two decades for
general resonance theory of polycyclic aromatic hydrocarbons (benzenoid systems). The
sextet polynomial for counting sextet patterns of benzenoid or coronoid systems was
found by Hosoya and Yamaguchi [3]. In fact the sextet polynomial reflects the com-
binatorial background of Clar’s concept of the aromatic sextet [4,5], and was used for
the calculation of the resonance energy of benzenoid hydrocarbons [6,7]. Gutman [9]
and John [8] extended the sextet polynomial to define the so-called cell polynomial of
polycyclic unsaturatedalternanthydrocarbons for counting Clar (or resonant) patterns.

∗ This work is partially supported by Research Grant Council Grant of Hong Kong, Faculty Research Grant
of Hong Kong Baptist University, National Natural Science Foundation of China and TRAPOYT.

405

0259-9791/02/0500-0405/0 2002 Plenum Publishing Corporation



406 W.C. Shiu et al. / Normal components, Kekulé patterns, and Clar patterns

A certain correspondence between the Clar patterns and Kelulé patterns was established
[5,9–11].

A fixed bond (edge) of polycyclic unsaturated alternant hydrocarbons cannot be
contained in any conjugated circuits and thus has no contribution toπ -resonance ener-
gies of the corresponding molecules. The decomposition of such molecular graphs with
fixed bonds into normal components enables one to simplify greatly the computations of
some graph-theoretical models as mentioned above.

As a mathematical framework of polycyclic unsaturated alternant hydrocarbons, in
this paper we consider a plane bipartite graph with perfect matchings, which embraces
benzenoid and coronoid systems [7,12,13].

A plane graphG is an (intersection-free) embedding in the Euclidian plane. A sub-
graphH of G is a plane graph that can be viewed as the restriction of the embedding of
G onH . The boundary of the infinite face is simply referred to as the boundary ofG,
denoted∂G. A vertex not belonging to the boundary ofG is said to beinterior vertex
of G. An outerplane graphis a 2-connected plane graph without interior vertices. A fi-
nite face ofG is called acell if its boundary is a cycle. For convenience, a cell may be
referred to its boundary.

A Kekulé pattern(or 1-factor, perfect matching [14] and Kekulé structure [13]) of
G is a set of pairwise disjoint edges ofG that cover all of its vertices. For a 1-factorM
of G, a cycleC of G is calledM-alternating(or conjugated) if the edges ofC alternate
on and off theM. Such a cycleC is said to to beresonant. A setS of pairwise disjoint
cells ofG is calledClar (or resonant) patternif G has a 1-factorM such that all cells in
S are simultaneouslyM-alternating.

An edge ofG is called afixed single edgeif it belongs to no 1-factor;fixed double
edgeif it belongs to all 1-factors. A bipartite graph with 1-factor is callednormal (or
elementary) if it is connected and has no fixed single edges. The components of the sub-
graph ofG formed by all nonfixed edges are normal and thus callednormal components
of G. Fast algorithms were designed [15–17] to determine all normal components and
fixed edges of bipartite graphs.

It is known that an elementary bipartite graph with more than two vertices is
2-connected. Several equivalent results for a bipartite graph to be elementary were de-
scribed in [14]. In case of plane bipartite graphs [18] (including benzenoid systems [19]
and coronoid systems [20]), some special fundamental structural properties were given.
In section 2 we shall list such characterizations in term of resonant faces.

Much works [13,21–25] were done on benzenoid systems with fixed edges, which
were viewed as “essentially disconnected”. In fact it has been rigorously proved by
Hansen and Zheng [23] that an essentially disconnected benzenoid system has at least
two normal components, and every normal component is a normal benzenoid sys-
tem.

For plane bipartite graphs with fixed edges, the situation is somewhat complicated.
For example, the coronoid systemG shown in figure 1 has three normal components
G1,G2 andG3; bothG1 andG2 are normal benzenoid systems, where every interior
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Figure 1. (a) A coronoid systemG with fixed single edges. (b) Normal components ofG.

face is a face ofG, such normal components are callednormal blocks; while G3 is
a coronoid system with a “hole” that is not face of the original graphG, that means that
G3 is not a normal block.

Even though, it is shown in section 3 that a plane bipartite graphG with fixed edges
and the minimum degree not less than 2 has at least two normal components and at least
onenormal block. As an immediate consequence, we have that for any 1-factorM of G,
anM-alternating cell exists. In section 4 some extremal cases are characterized. For
example, it is proved that every normal component ofG is normal block if and only if
G is weakly elementary.

Finally we will give some applications of the results obtained above to resonance
theory. It is shown that the sextet polynomial of a benzenoid or coronoid system can
be expressed as the product of those sextet polynomial of its normal components; such
an result holds for the cell polynomial of a plane bipartite graphG if and only if G
is weakly elementary. A surjection from the Kekué patterns to the Clar patterns ofG

is established; it is shown that such a surjection is an one-to-one correspondence if and
only if G is is weakly elementary and for any pair of resonant cycles their interior regions
are disjoint.

Throughout this paper, the vertices of a bipartite graphG are colored white and
black such that adjacent vertices receive distinct colors; denoteV (G) andE(G) the
vertex-set and edge-set ofG, respectively;δ(G) the minimum degree ofG andG the
family of connected plane bipartite graphs with 1-factor.
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2. Resonance faces of elementary plane bipartite graphs

A bipartite graph iselementaryif the union of its 1-factors forms a connected
subgraph. Various equivalent results on elementary bipartite graphs can be found in [14].
For example, a connected bipartite graph is elementary if and only if every edge belongs
to a 1-factor; if and only if the deletion of any pair of distinct colored vertices results in
a graph having a 1-factor. For a plane bipartite graphG, a facef of G is calledresonant
if G has a 1-factorM such that the boundary off is anM-alternating cycle. In case of
plane bipartite graphs, the following special characterization in terms of resonant faces
was given.

Theorem 2.1 [18]. LetG be a plane bipartite graph with 1-factors. ThenG is elemen-
tary if and only if every face ofG is resonant.

If all interior vertices ofG are of the same degree, a simpler criterion is given as
follows.

Theorem 2.2 [18]. Let G be a connected and bipartite plane graph. Suppose all the
interior vertices ofG are of the same degree. ThenG is elementary if and only if the
exterior face ofG is resonant.

Three distinct types of such graphs are exemplified in figure 2. Abenzenoid sys-
tem is 2-connected plane bipartite graph in which every interior region is bounded by
a unit regular hexagon. Acoronoid systemis a benzenoid system withholes(i.e., non-
hexagonal interior faces), but every edge is contained in a hexagon. Since all interior
vertices of a benzenoid system are of degree three, so theorem 2.2 implies the follow-
ing

Corollary 2.3 [19]. LetH be a benzenoid system with 1-factors. ThenH is normal if
and only if the exterior face ofH is resonant.

For coronoid system, the following criterion was obtained by Zhang and Zheng.

Theorem 2.4 [20]. LetC be a coronoid system with 1-factors. ThenC is normal if and
only if every nonhexagonal face is resonant.

Figure 2. Some types of plane bipartite graphs that its interior vertices are of the same degree.
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3. Normal components

Fast algorithms were designed [15–17] to determine all normal components and
fixed single edges of bipartite graphs. One is outlined as follows. First, we orient all
edges of any given 1-factorM from white towards black end-vertices. Then we orient
all the other edges ofG from black towards white end-vertices. Finally, by depth first
search we determine the strongly connected components of the resulting digraph in linear
times. These strongly connected components correspond to normal components ofG.

It is useful to introduce a (geometric) dual graphG∗ [26] of a plane graphG in
characterizing a plane bipartite graph with fixed single edges:G∗ has a vertexf ∗ for
every facef ofG, wheref ∗ is placed insidef ; corresponding to an edgee ofGwhich is
adjacent to two facesX andY of G, there is an edgee∗ of G∗ joining the verticesX∗ and
Y ∗ of G∗ ande∗ crosses only the edgee of G. ForE ⊆ E(G), putE∗ := {e∗ | e ∈ E}.
Note that the dual graphG∗ is a connected plane graph and may contain self-loops and
multiple edges.

A setS of edges of a connected graphG is called acutsetif G−S is not connected
andG− S ′ remains connected for any proper subsetS ′ of S.

Lemma 3.1 [26]. Edges in a plane graphG form a cutset inG if and only if the corre-
sponding dual edges form a cycle inG∗.

Definition 3.1. Let G be a connected plane bipartite graph. A cutsetC of G is called
elementary edge cut(e-cutset) of G if all edges ofC are incident with white vertices of
one component ofG − C. This component is called thewhite bank ofC, denoted by
Gw(C). The other component is called theblack bank ofC, denoted byGb(C). The
corresponding cycleC∗ of G∗ is called anelementary closed cut line(simply e-cutline)
of G (see figure 1).

Note that the concepte-cutlinehere can be viewed as a generalization of cut (bro-
ken) segments appeared previously in benzenoid and coronoid systems [12,19,27,28].
Let H be a subgraph ofG. Denotew(H) andb(H) the numbers of white and black
vertices, respectively. LetG ∈ G. The following theorem gives a criterion to determine
whetherG has a fixed single edge.

Theorem 3.2 [18]. LetG ∈ G. ThenG is not elementary if and only ifG has an e-cutset
C such thatb(Gb(C)) = w(Gw(C)), i.e., all edges ofC are fixed single.

Recall that a normal component ofG is called anormal blockif every interior face
of it is a cell of the original graphG. Although any normal component ofG is not
necessarily a normal block as shown in introduction, we have the following

Theorem 3.3. LetG ∈ G andδ(G) � 2. ThenG has at least one normal block.
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Proof. If G is elementary, the result is trivial. Suppose thatG has a fixed single edge.
Then by theorem 3.2, there exists an e-cutlineC∗ corresponding to e-cutsetC such that
all the edges ofC are fixed single. Suppose thatC∗ is minimal in the sense that there is
no other e-cutsetC consisting of fixed single edges such that the component ofG − C

lying in the interior ofC
∗

is a proper subgraph of the component ofG− C lying in the
interior ofC∗. Without loss of generality, assume that the component ofG − C lying
in the interior ofC∗ is the white bank, i.e.,Gw(C). SinceG ∈ G and the restriction of
every 1-factor ofG onGw(C) is also a 1-factor ofGw(C), soGw(C) ∈ G. It is easily
seen that every black vertex inGw(C) is of the same degree (� 2) as inG. SoGw(C)

has at least 4 vertices.
It suffices to prove thatGw(C) is elementary: ifGw(C) is elementary and has

more than two vertices, its edges are nonfixed. Moreover, all edges ofC are fixed single
implies thatGw(C) is a normal component ofG. Since every cell ofGw(C) is that ofG,
Gw(C) is a normal block ofG.

Suppose thatGw(C) has a fixed single edge. Then by theorem 3.2Gw(C) has
also an e-cutsetC whose edges are all fixed single. From the dual graphG∗, delete the
vertices lying in the exterior ofC∗ and contract the cycleC∗ into a vertexc∗ to result
in the dual graph ofGw(C). If the corresponding e-cutlineC

∗
of Gw(C) does not pass

throughc∗, thenC is identical with an e-cutset ofG and the component ofG− C lying
in the interior ofC

∗
is a proper subgraph ofGw(C), which contradicts the minimality

of C∗. ThusC
∗

passes throughc∗. Whenc∗ is recovered to the cycleC∗ of G∗, C∗

either remains a cycle or becomes a path ofG∗, denoted byP ∗. For the former case, a
contradiction would occur as before. We consider the latter case, inC∗∪P ∗ there exists a
cycleC ′∗ that is an e-cutline ofG (see figure 1), the interior of which contains the white
bank. Obviously all edges of the corresponding e-cutsetC ′ are fixed single. However,
the component ofG − C ′ lying in the interior ofC ′∗ is a proper subgraph ofGw(C),
which also contradicts the minimality ofC∗. �

Definition 3.2. SupposeG ∈ G has fixed single edges. A normal componentGi of G is
said to beextremeif (i) Gi is a (white or black) bank of an e-cutset ofG, and (ii)Gi has
exactly one face which is not a face ofG.

Corollary 3.4. SupposeG ∈ G andδ(G) � 2. If G has a fixed single edge, thenG has
at least two extreme normal components.

Proof. The proof of theorem 3.3 implies thatG has a normal component that is a bank
of an e-cutlineC∗ and contained in the interior of it, which must be extreme; the ex-
istence of another extreme normal component can be verified when considering always
the exterior region ofC∗. �

Corollary 3.5. SupposeG ∈ G. If all vertices with degree one ofG are of the same
color and lie on the boundary ofG, thenG has at least one normal block.
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Figure 3.

Proof. Without loss of generality, assume that all vertices with degree one ofG are
of white color. Letu be a white vertex incident with a unique edgeuv. Thenuv is a
pending, and thus fixed double edge. The other edges incident withv are fixed single
edges. Deleting the verticesu andv together with incident edges, the resulting graphG′
has the following properties (see figure 3):

(i) Every interior face ofG′ remains a face ofG;

(ii) G′ has black vertices, and every black vertex remains the same degree (� 2)
as inG; and

(iii) If G′ has a vertex with degree 1, then it is of white and lies on the boundary
of G′.

Repeating the above procedure, by the finiteness ofG we finally obtain a subgraph,
denoted byG′′, satisfying that every interior face is a face ofG and the minimum degree
� 2. By theorem 3.3,G′′ and thusG has a normal block. �

Lemma 3.6 [18]. LetG be a plane elementary bipartite graph with more than two ver-
tices. Then for every 1-factorM of G, it has anM-alternating cell.

Corollary 3.7. Let G ∈ G. If all vertices with degree one ofG are of the same color
and lie on the boundary ofG, or if δ(G) � 2, then for every 1-factorM of G, there
exists anM-alternating cell.

Proof. By theorem 3.3 and corollary 3.5,G has a normal blockG1. For every 1-factor
M of G, the restrictionM|G1 is also 1-factor ofG1. Then by lemma 3.6,G1 and thusG
has anM-alternating cell. �

4. Some extremal cases

From theorem 3.3, we know that a plane bipartite graph with a fixed single edge and
the minimum degree� 2 has at least one normal block. In this section we shall discuss
when a plane bipartite graph has exactly one normal block and all normal components
are normal blocks, respectively. In addition, we estimate the number of normal blocks
when a single cycle is a normal block.
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4.1. Exactly one normal block

Definition 4.1. LetG ∈ G. LetG1 andG2 be two disjoint subgraphs ofG andf a finite
face ofG2. ThenG can be represented asG := G1 �f G2, if

(i) G1 lies in the interior of facef of G2;

(ii) Let G′ := G− V (G1 ∪G2). ThenG′ lies in the interior off and the exterior
of G1 andG′ has a unique 1-factor; and

(iii) Let E0 = E(G)\E(G1∪G2). ThenE0 lies in the interior off and the exterior
of G1 and only the vertices with the same color ofG1 (respectivelyG2) are
incident with edges ofE0.

“�f ” is, in fact, an operation between two plane bipartite graphs. For an example,
see figure 4. Furthermore, we can define the operations�f among many graphs in turn,
for example,G1 �f1 G2 �f2 G3 = (G1 �f1 G2) �f2 G3. Note that the operation “�f ”
satisfies the associate law but not the commutative law. For convenience, the subscriptf

may be omitted if no confusion may arise.

Theorem 4.1. Let G ∈ G andδ(G) � 2. ThenG has exactly one normal block if and
only if G can be represented asG := G1 � G2 � · · · � Gk (k � 1), where theGi ’s are
the normal components ofG.

Proof. Let G1,G2, . . . ,Gk (k � 1) denote the normal components ofG. If G can be
represented asG := G1 � G2 � · · · � Gk, by definition 4.1 it is obvious thatG has a
unique normal blockG1.

We shall prove the necessity by the induction on the numberk of normal compo-
nents ofG. If k = 1, then by corollary 3.4G itself is elementary and the result is trivial.
In what follows, suppose thatk � 2. By the proof of theorem 3.3,G has an e-cutlineC∗
such that the component ofG− C lying in the interior ofC∗ is a normal block, denoted
by G1. The component ofG − C lying in the exterior ofC∗ is denoted byG′. We as-
sert thatC∗ does not pass through the vertex ofG∗ corresponding to the exterior ofG.
Otherwise every interior face ofG′ is a cell ofG, and by corollary 3.4G′ also contains
a normal block ofG, a contradiction. ThusG′ has exactly one interior facef ′1 which is

Figure 4. Illustration ofG := G1 �f G2.
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not a cell ofG. If G′ has vertices of degree 1, they must be of the same color and lie
in the boundary off ′1. By the proof of corollary 3.5, repeatedly deleting those vertices
with degree 1 and their adjacent vertices together with their incident edges in turn, the
resulting graphG′′ has the following properties: (i)G′′ is connected and the minimum
degree� 2, (ii) G′′ has exactly one finite facef1 which is not face ofG, and (iii)G′′ has
k − 1 normal components. ThusG = G1 �f1 G

′′. On the other hand,G′′ has exactly
one blockG2, which must contain the facef1 of G′. By the induction hypothesis we
have thatG′′ := G2 � · · · � Gk, where theGi ’s are the normal components ofG′′.
ThusG := G1 � G2 � · · · � Gk. The proof is complete. �

Corollary 4.2. Let G ∈ G andδ(G) � 2. If G has exactly one normal block, then the
exterior face ofG is resonant.

Proof. By theorem 4.1, the exterior face ofG is also that of the normal componentGk .
By theorem 2.1 the exterior face ofGk, and thus ofG is resonant. �

As an immediate consequence, we have

Corollary 4.3. Let G ∈ G and δ(G) � 2. If G has a fixed single edge lying in the
boundary ofG, thenG has at least two normal blocks.

4.2. All normal blocks

Definition 4.2. Let G ∈ G. An edge ofG is calledallowed if it belongs to a 1-factor.
G is calledweakly elementary[18], if for any resonant cycleC of G, the edges that are
incident with the vertices ofC and lie in the interior ofC are allowed.

Lemma 4.4 [18]. LetG ∈ G andδ(G) � 2. ThenG is weakly elementary if and only
if for every resonant cycleC, the subgraph ofG formed byC together with the interior
is elementary.

Theorem 4.5. LetG ∈ G. Then every normal component ofG is a normal block if and
only if G is weakly elementary.

Proof. Suppose that every normal component ofG is a normal block. LetC be any
resonant cycle ofG. ThenC must be contained in a normal componentGi of G. Since
Gi is also normal block, the edges lying in the interior ofC are allowed. ThenG is
weakly elementary.

Conversely, suppose thatG is weakly elementary. LetG1, . . . ,Gk (k � 1) be the
normal components ofG. Since eachGi (1 � i � k) is a plane elementary bipartite
graph, the boundary∂Gi of Gi is a resonant cycle. LetI [∂Gi] denote the subgraph ofG
formed by∂Gi and the interior. By lemma 4.4I [∂Gi] is elementary. ThusI [∂Gi] = Gi ,
i.e.,Gi is a normal block ofG. �
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Corollary 4.6. LetG ∈ G be weakly elementary andδ(G) � 2. If G has a fixed single
edge, thenG has at least two normal blocks.

Obviously elementary plane bipartite graphs are weakly elementary. Other types
of known weakly elementary bipartite graphs are hexagonal systems, square systems
and other systems exclusively formed by regular squares and octagons as cells (see fig-
ure 2), etc., which have the important properties that the interior vertices have the same
degree and if the boundary is a resonant cycle, then they are elementary. Theorem 4.5
and corollary 4.6 can be viewed as extension of the corresponding results in hexagonal
systems. Furthermore, we are interested in seeking for novel types of weakly elementary
plane bipartite graphs.

4.3. Small normal blocks

Theorem 4.7. Let G ∈ G andδ(G) � 2. Assume thatG has more than one cycle and
all vertices of degree 2 lie on the boundary ofG. If G has a cycle as normal block, then
G has at least two normal blocks.

Proof. Let a cycleC of G be a normal block. Suppose thatG has exactly one normal
block, which must beC. SinceG has more than one cycle,G has fixed single edges and
thus at least two normal components. By theorem 4.1 we know that the vertices ofC are
interior vertices ofG and thus of degree� 3; on the other hand, only the same colored
vertices (say white) are incident with edges not belonging toC, the black vertices ofC
are thus of degree 2, a contradiction. �

Theorem 4.8. Let G ∈ G be 2-connected and weakly elementary. Assume thatG has
more than one cycle and all vertices of degree 2 lie on the boundary ofG. If G has
m (m � 1) distinct cycles as normal blocks, thenG hasm+ 2 normal blocks.

Proof. It is obvious thatG contains fixed single edges and every normal component is
normal block (theorem 4.5). By corollary 3.4,G has two extremely normal blocksG1

andG2 such that only the same colored vertices ofG1 (respectivelyG2) are incident with
edges not belonging toG1 (respectivelyG2). We assert that neitherG1 norG2 is a cycle.
Suppose thatG1 is a cycle. SinceG is 2-connected,G has a pathP only end-verticesu
andv of which lie onC. Thenu andv are of the same color (say white). Furthermore,
P and a pathP ′ ofC fromu to v form a cycle. The interior of the cycle lies in the exterior
of C. SoP ′ has a black vertexx of degree 2, which must be an interior vertex ofG, a
contradiction. The assertion is verified. ThusG has at leastm+ 2 normal blocks. �

Remark. In [23] Hansen and Zheng showed that, if benzenoid systems with fixed edges
has a single hexagon as its normal component, then it has at least three normal compo-
nents. Such a result is now extended to weakly elementary bipartite graphs in a simpler
way. A type of benzenoid systems with exactlym+2 normal components are illustrated
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Figure 5. A hexagonal system with 6 normal components (shadowy parts).

Figure 6. Two weakly elementary bipartite graphs in which every normal block is a cycle.

in figure 5, wherem is the number of single hexagons as normal components. In addi-
tion, if the conditions of theorem 4.8 are violated, the result does not necessarily hold.
For example, all normal components (blocks) of two weakly elementary plane bipartite
graphs shown in figure 6 are cycles.

5. Clar patterns and cell polynomial

ForG ∈ G, let S be a set of pairwise disjoint cells ofG and denote byG − S the
plane graph obtained fromG by removing all vertices of cells inS together with their
incident edges. ThenS is called aClar (or resonant) pattern ofG if G − S either has
a 1-factor or is empty. It is obvious thatS is a Clar pattern ofG if and only if G has
a 1-factorM such that every cell inS is M-alternating. Furthermore, a Clar patternS
of G is calledsextet patternif every cell inS is a hexagon (or 6-membered ring). Let
c(G) andk(G) denote the number of Clar patterns and sextet patterns ofG, respectively.
A pair of resonant cyclesC1 andC2 means thatC1 andC2 are disjoint andG−C1−C2

has a 1-factor or empty.

5.1. Cell polynomial

We now describe an definition of cell polynomial ofG due to Gutman [9] and John
[8]. If the cells ofG are labelled byC1, C2, . . . , every cellCi is assigned a weight
wi := w(Ci). Then the weight of a Clar patternS is defined asW(S) := ∏C∈S w(C);
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in particular, the weight of an empty Clar pattern is 1. The cell polynomial ofG can be
defined as follows:

fG = fG(w1, w2, . . .) =
∑

S

W(S),

where the summation goes over all Clar patternS of G.
In [8] an algorithm for computing the cell polynomial of an outerplane bipartite

graph was designed. We first give a reduction method for computing the cell polynomial
of a plane bipartite graphG with fixed edges by decomposingG into its normal com-
ponents. LetG1, . . . ,Gk denote the normal components ofGi. Denote byFi the set of
some cells ofGi that are not cells ofG; such cells are called “forbidden”. The restricted
cell polynomial ofGi with respect to forbidden cells is defined as

f ∗Gi
= f ∗Gi

(w1, w2, . . .) =
∑

S

W(S),

where the summation goes over all Clar patternS of Gi containing no forbidden cells
of Gi. Of course, ifFi = ∅ (i.e.,Gi is a normal block),f ∗Gi

= fGi
.

Theorem 5.1. LetG1, . . . ,Gk be the normal components ofG ∈ G. Then

fG =
k∏

i=1

f ∗Gi
.

Proof. Let S be any Clar pattern ofG. Since any cell inS contains no fixed edges, it
must be a cell of exactly one normal components ofG. Thus the restriction ofS onGi

is also a Clar pattern ofGi that contains no forbidden cells ofGi; that means that any
Clar pattern ofG are composed of Clar patterns ofGi, for i = 1, . . . , k, containing no
forbidden cells ofGi and vice versa. �

The cell polynomial sometimes can be taken in various “coarsened” ways. For
example, let us compute the cell polynomial of the graphG shown in figure 4, which
has two normal componentsG1 andG2. If a cell C is assigned a weightw|C|, fG1 =
1+ w6 andf ∗G2

= 1+ 6w4 + 9w2
4 + 2w3

4. The cell polynomial reads asfG(w4, w6) =
(1+ w6)(1+ 6w4 + 9w2

4 + 2w3
4), which implies thatG has exactlyfG(1,1) = 36 Clar

patterns.

Theorem 5.2. LetG1, . . . ,Gk be the normal components ofG ∈ G. Then

fG =
k∏

i=1

fGi

if and only ifG is weakly elementary.
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Proof. By theorem 5.1fG = ∏k
i=1 f

∗
Gi
. In generalf ∗Gi

is only a part offGi
. Thus

fG = ∏k
i=1 fGi

holds if and only iff ∗Gi
= fGi

for all i. Furthermore, if and only if
every cell ofGi is also a cell ofG. Otherwise, suppose that a cellC of someGi is not
a cell ofG. By theorem 2.1{C} is a Clar pattern ofGi, but contains a forbidden cell. It
implies thatf ∗Gi

�= fGi
, a contradiction. �

Corollary 5.3. Let G ∈ G andδ(G) � 2. If the cell polynomial ofG is irreducible on
the polynomial ringZ[w1, w2, . . .], thenG has exactly one normal block, and the other
normal components are cycles (if it has other).

Proof. By theorem 3.3, denoteG1, . . . ,Gk (k � 1) the normal components ofG,
whereG1 is a normal block. Thenf ∗G1

= fG1 �= 1. By theorem 5.1 we havefG =∏k
i=1 f

∗
Gi

, which implies thatf ∗Gi
= 1, for all 2� i � k, and none of theGi are normal

block. Furthermore, by theorems 2.1 and 4.1 it easily follows that theGi for all i � 2
are cycles. �

Definition 5.1 [29]. LetM be a 1-factor ofG ∈ G. An M-alternating cycleC of G is
calledproper if every edge ofC belonging toM goes from white end-vertex to black
end-vertex by the clockwise orientation ofC; otherwiseC is improper.

Lemma 5.4 [29]. For anyG ∈ G there exists a unique 1-factorM without proper
M-alternating cycles. Such 1-factor is called theroot 1-factor.

Theorem 5.5. Let G ∈ G. Thenc(G) = fG(1,1, . . .) � k(G), and the equality holds
if and only if G is weakly elementary and for any pair of resonant cycles their interior
regions are disjoint.

Proof. We establish a mappingφ from the Kekulé patterns to the Clar patterns ofG as
follows. For any 1-factorM ofG, defineφ(M) as the set of all properM-alternating cells
of G. It is obvious thatφ(M) is a Clar pattern ofG. Furthermore, it will be shown that
φ is a surjection. For any Clar patternS of G, by lemma 5.4 we take the root 1-factorM0

of G− S (i.e., without properM0-alternating cycles), and a 1-factorM1 of the subgraph
formed by all cells inS such that all cells inS are properM1-alternating. It follows that
M0 ∪M1 is a 1-factor ofG andφ(M0 ∪M1) = S. Soc(G) = fG(1,1, . . .) � k(G).

The equality holds if and only ifφ is a one-to-one correspondence between the
1-factors and the Clar patterns ofG. Suppose thatG is weakly elementary and for
any pair of resonant cycles their interior regions are disjoint. LetM1 andM2 be two
1-factors ofG such thatφ(M1) = φ(M2) = S0. It will be shown thatM1 = M2.
Let M ′1 andM ′2 be the restrictions ofM1 andM2 on G − S0, respectively. IfM1 �=
M2, then M ′1 �= M ′2. Then the symmetric differenceM ′1 ⊕ M ′2 := (M1 ∪ M2)\
(M1 ∩ M2) contains an alternating cycleC in M ′1 andM ′2. Without loss of general-
ity we may say thatC is properM ′1-alternating. LetG[C] denote the subgraph ofG
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formed byC together with the interior. ThenG[C] is a subgraph ofG− S0, and it is el-
ementary by theorem 4.4. However,G[C] has a properM ′1-alternating cell ofG, which
would belong toS0, a contradiction.

Conversely, ifG has a pair of resonant cyclesC1 andC2 such thatC1 lies in
the interior ofC2; that means thatG has a 1-factorM such that bothC1 andC2 are
M-alternating. By corollary 3.5G[C1] has anM-alternating cellC of G. SoC andC2

are a pair of resonant cycles. LetG0 := G − C. We choose a 1-factorM1 of G such
thatC is properM1-alternating andM1|G0 is the root 1-factor ofG0. It is obvious that
φ(M1) = {C}. On the other hand, sinceC2 is a resonant cycle ofG0, it must be contained
in a normal component ofG0. We choose a cellC ′2 of this normal component so that
its interior contains the cellC of the original graph. By lemma 5.4 we can construct an-
other 1-factorM2 of G such that bothC andC ′2 are properM2-alternating andM2|G0−C ′2
is the root 1-factor ofG0 − C ′2. ThenM1 �= M2. But it follows thatφ(M2) = {C};
otherwise, if other properM2-alternating cellC ′ of G other thanC would occur,C ′ is
disjoint withC, must lie in the interior ofC ′2 and intersectC ′2, which contradicts thatC ′2
is a cell of a normal component ofG0.

On the other hand, ifG is not weakly elementary,G has a resonant cycleC2 such
thatG[C2] contains a fixed single edge ofG. ThenC2 must be contained in a normal
componentG1 of G, which is not a normal block; that is,G1 has a cellC that is not a
cell ofG. We choose two 1-factorsM1 andM2 of G so thatM1 is the root 1-factor ofG,
C is properM2-alternating cycle andM2|G−C is the root 1-factor ofG−C. Similarly, it
follows thatφ(M1) = φ(M2) = ∅, a contradiction. �

Corollary 5.6 [10]. LetG ∈ G. Thenc(G) = fG(1,1, . . .) � k(G); the equality holds
if G is an outerplane bipartite graph.

5.2. Sextet polynomial

In this subsection we discuss the sextet polynomial of benzenoid or coronoid sys-
temsG, which is defined as [3,5]

BG(x) =
∑

S

x|S| =
m∑

i=1

σ (G, i)xi ,

where the first summation goes over all sextet patterns ofG, σ (G, i) denotes the num-
ber of sextet patterns with exactlyi hexagons andm is the maximum size of sextet
patterns.

The sextet polynomial of a benzenoid system can be reduced from its cell poly-
nomial by assigning all hexagons the same weightx; further the sextet polynomial of a
coronoid systems can reduced from its restricted cell polynomial when all “holes” are
viewed as forbidden faces.

A subgraphH of a graphG is said to benice if G− V (H) has a 1-factor.
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Theorem 5.7. Let G be a benzenoid or coronoid system andG1, . . . ,Gk its normal
components. Then

BG(x) =
k∏

i=1

BGi
(x).

Proof. It follows from a fact that a setS of pairwise disjoint hexagons inG is a sextet
pattern ofG if and only if the restriction ofS on every normal componentGi is also a
sextet pattern ofGi . �

Lemma 5.8 [19]. LetG be a benzenoid system. Thenc(G) = BG(1) � k(G), and the
equality holds if and only ifG contains no coronene (the first one on the left-hand side
in figure 2) as its nice subgraph.

Theorem 5.9. Let G be a coronoid system. ThenBG(1) � k(G), and the equality
holds if and only if every normal component ofG is benzenoid system that contains no
coronene as its nice subgraph.

Proof. By theorem 5.5 we have thatBG(1) � c(G) = fG(1,1, . . .) � k(G). Let
G1, . . . ,Gk denote the normal components ofG. Combining by theorem 5.7 and a fact
k(G) = ∏ k(Gi), we have thatBG(1) = k(G) if and only if BGi

(1) = c(Gi) = k(Gi)

for all 1 � i � k. It implies thatGi are benzenoid systems, i.e.,Gi contains no holes
(nonhexagon interior faces). Otherwise, such a hole itself can form a Clar pattern, other
than sextet pattern, a contradiction. The second result follows by lemma 5.8. �
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